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Smectic filaments in colloidal suspensions of rods

Daan Frenkel and Tanja Schilling
FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

~Received 4 June 2002; published 28 October 2002!

In supersaturated isotropic mixtures of hard rods, smectic filaments have recently been observed. We pro-
pose a model for formation and growth of these filaments similar to the Hoffman-Lauritzen model for polymer
crystallization. Filament thickness is determined by a compromise between maximizing the amount of smectic
phase formed and minimizing the nucleation barrier for adding new segments to the growing filament. We
compare our analytical results to kinetic Monte Carlo simulations.
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I. BACKGROUND

Recent experiments by Dogic and Fraden@1# have shown
that thin smectic ‘‘filaments’’ can form in supersaturat
mixtures of rodlike virus particles and nonadsorbing po
mers. An obvious question is: how are these filame
formed? More specifically, we would like to be able to pr
dict the characteristic dimensions of these filaments.

Below, we shall argue that the mechanism by which
filaments form bears a striking similarity to the Hoffma
Lauritzen @2# picture of polymer crystallization, i.e., th
mechanism of thickness selection is determined by a c
promise between maximizing the thermodynamic drivi
force and minimizing the nucleation barrier for adding ne
segments to the growing filament.

II. MODEL

The basic ingredients of our model are the following:
order to form a smectic phase, the system first has to nucl
a smectic disk with monolayer thickness. However, under
relevant experimental conditions, a single smectic laye
less stable than the metastable isotropic parent phase. H
rather than growing in the lateral direction, a second sme
disk will nucleate on top of the first one. Under the app
priate conditions, this can lower the free energy of the sm
tic aggregate, although many disks may have to be ad
before the aggregate becomes thermodynamically m
stable than the parent phase. Once the growth of a sm
filament has started, it will continue at effectively consta
thickness, until the wall of the container is reached, or
concentration of molecules in the parent phase has drop
to a level where further growth anda fortiori further nucle-
ation, is suppressed. This view assumes that the phase
sition is of first order. In the present case, the isotropic
smectic transition is coupled to a ‘‘vapor-liquid’’ condens
tion, and is therefore strongly first order. Under those con
tions, the use of a mean-field nucleation picture is not pr
lematic. However, it often happens that one-dimensio
ordering transitions~e.g., the formation of lamellar phase!
are continuous in the mean-field approximation. The tran
tion is then driven first order by fluctuations@3#. Hohenberg
and Swift have shown that, even in this case, it is possibl
formulate a self-consistent nucleation theory@4#.

Let us consider the mechanism of smectic layer format
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in some detail. In the spirit of classical nucleation theory~see
e.g., Ref.@5#!, we use macroscopic concepts such as b
densities, surface free energies and chemical potential
describe the properties of the smectic filaments. We den
the number density of the bulk smectic phase byr. The
difference in chemical potential between the smectic and
tropic phases,mS2m I , is denoted byDm. As the bulk smec-
tic phase is presumed to be more stable than the isotr
phase,Dm,0. The thickness of a single smectic layer
denoted byd. Finally, we assume that the surface free ene
of a smectic domain is anisotropic. The surface free ene
associated with the interface between the top of a sme
layer and the adjacent isotropic phase, is denoted byg' ,
where the symbol' is used to indicate that this layer i
perpendicular to the molecular axes. The interfacial free
ergy of the interface between the edges of the smectic la
and the isotropic phase, is denoted byg i . Implicitly, we
assume that, for the description of filament formation, it
permissible to ignore the fact that the constituent rodl
viruses are chiral.

With these definitions, we can write down the free ene
associated with the formation of a circular smectic disk w
radiusR:

DF0~R!52pR2rduDmu12pR2g'12pRdg i . ~1!

As the first two terms on the right-hand side of Eq.~1! are
proportional toR2, we can combine them to obtain

DF0~R!5pR2~2g'2rduDmu!12pRdg i . ~2!

At low supersaturation, whenuDmu,2g' /(rd), DF0(R) is
positive. This implies that a single smectic layer cann
grow, even though the bulk smectic phase is more stable
the isotropic phase.

Let us next consider the formation of a second sme
disk, on top of the first one. As long as the surface of t
second disk does not exceed that of the original disk, no n
‘‘top’’ surface is created in this process. As a consequen
the free energy needed to grow a second disk of diameterr is
equal to

DF1~r !52pr 2rduDmu12prdg i . ~3!

For smallr, this free energy is also positive. However, it go
through a maximum atr max5g i /(ruDmu), and becomes
©2002 The American Physical Society06-1
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negative forr .2r max. If the radius of the initial disk was
larger than 2r max, then addition of a new smectic layer wit
the same radiusR as the first layer lowers the free energy
the aggregate by an amount

D f ~R!52pR2rduDmu12pRdg i . ~4!

This process can be repeated several times, and every
the free energy of the smectic ‘‘filament’’ will be lowered b
the same amount. Eventually, after

n5
2Rg'

RrduDmu22dg i

layers have been formed, the smectic filament becomes
solutely stable with respect to the isotropic parent phase
will go on growing until stopped by other factors. As th
driving force for growth vanishes for disk radii less thanR
52g i /(ruDmu), no filaments with smaller diameter ca
form. On the other hand, the free energy needed to form
first disk increases monotonically withR. Hence the nucle-
ation barrier to form a filament grows rapidly withR. The
optimum radius for smectic filaments is therefore expecte
be only slightly larger than 2g i /(ruDmu). The competition
between driving force and nucleation rate is also at the r
of the Hofmann-Lauritzen model for the layer-by-lay
growth of lamellar polymer crystals@2#. In fact, much of that
theory can be carried over with minor modifications to t
present case.

III. KINETICS

The rate of formation of smectic filaments is determin
by two factors: the first is the rate of formation of a first di
with radiusR. The second is the rate of addition of disks
an existing disk with radiusR. Both processes are activate
That means that we can express the rate of addition of
( i 11) to a stack ofi disks, as

ki→ i 11
1 5G i exp@2b DFB~ i→ i 11!#, ~5!

whereG i is a kinetic prefactor. As we shall argue below, th
prefactor is independent ofi. Hence, in what follows, we
drop the subscripti. DFB( i→ i 11) is the free-energy barrie
that has to be crossed when going from statei to i 11. In
fact, only two different barriers need to be distinguished. T
first is the barrier that separates the initial isotropic state fr
a hypothetical state with one smectic disk of radiusR. We
denote this barrier byDF0(R). This state is called a ‘‘hypo-
thetical’’ state, because it does not correspond to a lo
minimum in the free energy. The first state that does, is
one with two disks. The second relevant free-energy bar
is the one that separates statesi and i 11, for i>2. This
barrier, we denote byDF1 ~Fig. 1!. The height of this barrier
can be derived from Eq.~3!,

DF15pg i
2d/~ruDmu!.

Note that this barrier does not depend onR. To compute the
rate of formation of filaments, we assume that steady-s
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conditions apply. This means that the concentrations of
intermediate species~i.e., those consisting of 2,3,4, . . .
disks! are constant in time. For every transition fromi to i
11, there is a reverse transition with a rate constantki 11→ i

2 .
If we denote byI the steady-state rate of addition of disks
a filament, then we have the following relation between f
ward and backward reactions:

Niki→ i 11
1 2Ni 11ki 11→ i

2 5I . ~6!

Moreover, in equilibrium,I 50 and hence we obtain th
detailed-balance condition

Ni 11
0

Ni
0

5
ki→ i 11

1

ki 11→ i
2

, ~7!

whereNi
0 denotes the equilibrium concentration of a filame

consisting ofi smectic disks of radiusR. The ratio between
the equilibrium concentrations is directly related to the fre
energy difference between statesi 11 andi:

Ni 11
0

Ni
0

5exp$2b@F~ i 11!2F~ i !#% .

To compute the steady-state rateI, we use the standard tric
of expressingI as

I 5N0k0→2
1 2N2k2→0

2 5N2k2→3
1 2N3k3→2

2
•••

5Niki→ i 11
1 2Ni 11ki 11→ i

2 . ~8!

The i th term in the above set of equations can be written

I 5Niki→ i 11
1 2Ni 11ki 11→ i

2 5Ni
0ki→ i 11

1 S Ni

Ni
0

2
Ni 11

Ni 11
0 D ,

~9!

and hence

Ni

Ni
0

2
Ni 11

Ni 11
0

5
I

Ni
0ki→ i 11

1
. ~10!

FIG. 1. Nucleation barrier for smectic filaments.
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We now make use of the fact thatNi'Ni
0 for i 50, indicat-

ing that the initial state is in~metastable! equilibrium, while
for i @1, (Ni /Ni

0)'0. Then, by summing Eq.~10! for all i,
we get

15I S 1

N0
0k0→2

1
1(

i 52

`
1

Ni
0ki→ i 11

1 D . ~11!

This expression can be simplified by using Eq.~5! for the
rate constants to express the ratio

k0→2
1

ki→ i 11
1

5exp$2b@DF0~R!#%.

Using the symbolk1
1 for ki→ i 11

1 for all i>2, we can rewrite
Eq. ~11! as

15
I

k1
1 S 1

N0
0 exp$b@DF0~R!#%

1(
i 52

`
1

Ni
0D . ~12!

We can perform the summation in the second term on
right-hand side, and use Eq.~4! to obtain

15
I

k1
1 S 1

N0
0 exp$b@DF0~R!#%

1(
i 52

`
1

Ni
0D

5
I

k1
1N0* $12exp@bD f ~R!#%

, ~13!

whereN0* [N0
0 exp@2b DF0(R)#. The expression we then ob

tain for the rate of growth of smectic filaments is

I 5k1
1N0* $12exp@b D f ~R!#%. ~14!

Using Eq.~5!, we can rewrite this as

I 5N0
0k1

1 exp$2b@D F0~R!#%$12exp@b D f ~R!#%.
~15!

Equation ~15! exhibits the behavior mentioned above:
yields a vanishing rate whenD f (R) vanishes, i.e., when
there is no net thermodynamic driving force for filament fo
mation. And, in addition,I decreases steeply with increasin
height of the nucleation barrier.

IV. PREFACTOR

The rate at which new disks are added to the filament
be estimated, assuming that the addition of a disk involve
diffusive barrier crossing. Let us first compute the rate
which the transition from a state withi disks to one withi
11 disks takes place. This rate is equal to

k1
15exp~2bDF1!kaddAuDF19u

2p
,
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wherekadd is the rate at which single rods are added to a d
at the top of the nucleation barrier andDF19 is the curvature
at the top of the free-energy barrier

DF195
]2DF~n!

]n2
.

Note that the variable is not the disk radiusr, but n, the
number of rods in a disk with radiusr. n is related tor
through

n5rpr 2d,

and hence

DF1952
~Dm!3r

2pdg i
2

.

Combining these results, we get

k1
15exp@2bpg i

2d/~rDm!#kaddA ~Dm!3r

d~2pg i!
2

.

We can estimatekadd to be of order

2prdr ID' /l,

wherer I is the number density in the isotropic phase,D' is
the transverse diffusion constant of the rods, andl is a char-
acteristic diffusion length. The overall rate of growth per u
volume of smectic filaments with radiusR is then

G~R!5I/V5r I exp@2bpg i
2d/~rDm!#2pS g i

rDm DdrND' /l

3A ~Dm!3r

d~2pg i!
2

exp$2b@DF0~R!#%

3$12exp@2bD f ~R!#%. ~16!

This rate still depends on the filament radius. To find t
radius of the fastest growing filaments, we should determ
the value ofR for which G(R) is maximized.

V. THERMAL FLUCTUATIONS

A. Model

So far we have assumed that a filament grows with
constant radius, once the size of the first disk is establish
The model has not taken thermal fluctuations into accou
We investigate their influence within a kinetic Monte Car
simulation.

We start out with a disk of random radius and add
subtract a disk in each time step according to the rates f
Eqs. ~5! and ~7!. Given a filament ofi disks, a new disk is
added with probability
6-3
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P1~Ri !5
k1

1

k1
11ki→ i 21

2
5

1

11exp$b@F~ i !2F~ i 21!#%
,

~17!

where we have used the fact that the forward rate is indep
dent of i and depends only on the barrier height for t
nucleation of a new disk. If no new disk is added thei th disk
is removed. The length of a time step 1/(k1

11ki→ i 21
2 ) de-

pends on the free-energy difference between the last
disks.

The radius of the added diskRi 11 is sampled from a
Boltzmann distribution with respect to the change in fr
energy it produces

P~Ri 11!5exp$2b@2pRi 11
2 rduDmu12pRi 11dg i

1Q~Ri 112Ri !2p~Ri 11
2 2Ri

2!g'#%, ~18!

FIG. 2. ~a! Most probable radius of disk (i 11) versus radius of
disk i. For Ri.2r max ^Ri 11& goes towards a fixed point at a finit
value ~solid and dashed line!. For smallerRi it goes to zero~dot-
dashed line!. ~b! Probability of adding a disk~of any size!, which
will not be removed again, to a disk of radiusR0 . (g i50.7,
S50.8.)
04160
n-

o

where theQ function takes into account the production
additional surface if a disk is larger than the previous. T
parameters of the model arer, Dm, d, g' , g i , andb. In the
following discussion of the resultsd5g'5b51, and we
combine all other parameters into the supersaturationS
52g' /rdDm.

B. Results

In the simulation the average radius of a filament diffe
from the radius of its first disk. If the radius of the first dis
is larger than 2r max a filament adjusts its average radius
one fixed valueRs . Otherwise it shrinks to zero. In Fig. 2~a!
the most probable radius of disk (i 11) is plotted against the
radius of thei th disk. Starting out from radii larger tha
2r max ~solid and dashed line! all paths end in a fixed point a
Rs . Starting out from smaller radii~dot-dashed line! all paths
go to zero. Figure 2~b! shows the probability of producing
disk of any size which will not be removed again on top o
disk of sizeR0. It is almost zero for radii smaller than 2r max
and grows to reach a plateau at the fixed point.

Figure 3 shows the correlation of radii along the filame
~normalized to 1 at disk 0! for several values ofg i . Radii are
correlated over a few disks, and the correlation length gro
with increasingg i and with increasing supersaturation.

The analytical expression for the growth rateI (R), Eq.
~15!, has a maximum at a radiusRmaxI . We find Rs to be
larger thanRmaxI . This is due to the asymmetry of the fre
energy in Eq.~18!, which on average causes disks of a rad
larger than 2r max to be added. The rateI (Rs) at which fila-
ments grow in the simulation can be compared to the a
lytical rate I (R) from Eq. ~15! if the probablity to form the
starting diskP(R05R), and the probability to grow a stabl
filament from itP(R→Rs) are included,

I sim~R!5P~R05R!P~R→Rs!I ~Rs!. ~19!

We find I sim(RmaxI) to be one to two orders of magnitud
smaller thanI (RmaxI) because of thermal fluctuations.

FIG. 3. Correlation of radii along the filament. Radii are corr
lated over a few disks. The correlation becomes longer with gro
ing g i (S50.9).
6-4
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Thermal fluctuations stabilize the growth of filaments
one fixed average thickness. This thickness only depend
the system parameters such as surface tensions and s
saturation, but not on the thickness of the first disk. T
average thickness is larger than the thickness of fas
growth from the analytical analysis and the filaments gr
more slowly. Disk size is correlated over a few disks.

VI. CONCLUSIONS

In this paper we have proposed a model for formation a
growth of smectic filaments in isotropic solutions of ha
rods.~The formation in a nematic solution can be describ
in a similar way!. As in the Hoffman-Lauritzen approach th
basic mechanism behind the formation process is the m
mization of the nucleation barrier for adding new layers. W
have predicted radii and growth rates.
r.
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We have performed kinetic Monte Carlo simulations
order to take into account thermal fluctuations. Thermal fl
tuations decrease the growth rate and stabilize the growt
filaments of one fixed average thickness regardless of
sizes of their first disks.
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